
Dbvisit Replicate Connector for Kafka
documentation

Release 1.0.0-SNAPSHOT

Dbvisit Software Limited

January 12, 2017

Contents

1 Dbvisit Replicate Connector for Kafka 3
1.1 Overview . 3

1.1.1 The Oracle Source . 3
1.1.2 The Kafka Target . 3

1.2 Quickstart . 4
1.2.1 Steps . 5

1.3 Features . 7
1.3.1 Change Row publishing . 7
1.3.2 Topic Per Table . 8
1.3.3 Topic Auto-creation . 8
1.3.4 Metadata Topic . 8
1.3.5 Data types . 9
1.3.6 LOB Handling . 9
1.3.7 LOAD . 9
1.3.8 Replicate Stream Limitation . 10
1.3.9 DDL Support . 10
1.3.10 JSON . 10
1.3.11 Delivery Semantics . 11

1.4 Schema Evolution . 11
1.5 Deployment Guidelines . 11

1.5.1 Upgrading . 11
1.6 Troubleshooting . 11

1.6.1 Logging . 11

2 Configuration Options 13
2.1 Configuration Parameters . 13

2.1.1 Key User Configuration Properties . 13
2.1.2 All User Configuration Properties . 13

2.2 Data Types . 15
2.3 Distributed Mode Settings . 15

3 Changelog 17
3.1 Replicate Source Connector . 17

i

ii

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

Contents:

Contents 1

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

2 Contents

CHAPTER 1

Dbvisit Replicate Connector for Kafka

The Dbvisit Replicate Connector for Kafka is a SOURCE connector for the Kafka Connect framework, run within
the Confluent Platform.

This connector enables you to stream DML change data records (inserts, deletes, updates) from an Oracle database,
which have been made available in PLOG (parsed log) files generated by the Dbvisit Replicate application, through
into Kafka topics.

You can find the Dbvisit Replicate Connector for Kafka project on GitHub, and which you can build from source, or
you can download the prebuilt JAR file from this location.

1.1 Overview

1.1.1 The Oracle Source

Change data is identified and captured on the Oracle RDBMS by the Dbvisit Replicate application, using proprietary
technology to mine the online redo logs in real time. Committed changes (pessimistic commit mode) made on the
Oracle database are streamed in real time, in a custom binary format called a PLOG file, to a location where the
Dbvisit Replicate Connector for Kafka picks them up, processes and delivers to Kafka topics. Note that only
changes made to tables or schemas you are interested in listening for, and which have been configured to be included
in the replication, are delivered to the PLOG files.

Please refer to the Dbvisit Replicate online user guide for information and instructions on setting and configuring that
application to produce and deliver the PLOG file stream.

1.1.2 The Kafka Target

The Dbvisit Replicate Connector for Kafka polls the directory where the PLOGs will be delivered, picking up and
streaming the changes identified in these files into Kafka, via the Kafka Connect framework.

By default all changes for a table are delivered to a single topic in Kafka. Topics are automatically generated, although
can be pre-created, but it is important to note that the mapping is as follows:

Oracle table -> Kafka topic

In addition to this the Dbvisit Replicate Connector for Kafka will also automatically create and write to a meta-data
topic (the name of which can be configured for the connector) in Kafka, which lists out Oracle transaction information
from across all the tables that changes have been configured to listen for. This can be utilized by Kafka consumers to
reconstruct the precise global ordering of changes, across the various topics, as they occurred in order on the Oracle
database.

3

https://www.confluent.io/download/
http://www.dbvisit.com/products/dbvisit_replicate_real_time_oracle_database_replication/
https://github.com/dbvisitsoftware/replicate-connector-for-kafka
https://www.dropbox.com/s/nhs8v3lwmigpks1/kafka-connect-dbvisitreplicate-2.0.0-SNAPSHOT.jar?dl=0
https://dbvisit.atlassian.net/wiki/pages/viewpage.action?pageId=112853028

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

By default the Dbvisit Replicate Connector for Kafka works with the Avro converters, provided as part of the Kafka
Connect framework, making use of the Schema Registry metadata service to govern the shape (and evolution) of
the messages delivered to Kafka. This is a natural fit when working with highly structured RDBMS data, and the
recommended approach for deployment.

1.2 Quickstart

To demonstrate the operation and functionality of the connector, we have provided a couple example sets of PLOG
files, generated by running the Swingbench load generation utility, against an Oracle XE 11g database. The PLOGs
containing a smaller dataset can be downloaded from this location, and contain the following number of change
records, across the tables included in the replication:

SOE.CUSTOMERS: Mine:156
SOE.ADDRESSES: Mine:156
SOE.CARD_DETAILS: Mine:155
SOE.ORDER_ITEMS: Mine:984
SOE.ORDERS: Mine:809
SOE.INVENTORIES: Mine:939
SOE.LOGON: Mine:1006
TX.META: Mine:1054

A set of PLOGs containing a larger dataset, and which also utilises the LOAD function, can be downloaded from the
location. This contains the following number of change records, across the tables included in the replication:

SOE.CUSTOMERS: Mine:112082
SOE.ADDRESSES: Mine:112293
SOE.CARD_DETAILS: Mine:112143
SOE.WAREHOUSES: Mine:1000
SOE.ORDER_ITEMS: Mine:768791
SOE.ORDERS: Mine:300376
SOE.INVENTORIES: Mine:902795
SOE.PRODUCT_INFORMATION: Mine:1000
SOE.LOGON: Mine:820090
SOE.PRODUCT_DESCRIPTIONS: Mine:1000
SOE.ORDERENTRY_METADATA : Mine:4
TX.META: Mine:3782

You can download the Dbvisit Replicate Connector QuickStart properties file (that you can also see on GitHub), which
contains sensible starting configuration parameters, from this location.

Using these examples files as a starting point means that you do not have to setup and configure the Dbvisit Replicate
application to produce a stream of PLOG files. So this will enable you to quickly get the Dbvisit Replicate Connector
for Kafka up and running, in order to see it ingest Oracle change data to Kafka, and view this from there with con-
sumers, or route to some other end target. Of course this limited change set means that you will not see new changes
flowing through from an Oracle source once they have been processed - but it is a good place to begin in terms of
understanding the connector functionality and operation.

To move beyond the Quickstart please refer to the Dbvisit Replicate online user guide for information and instructions
on setting and configuring that application to produce and deliver the PLOG file stream.

We also recommend reviewing the Confluent Kafka Connect Quickstart guide which is an excellent reference in terms
of understanding source/sink data flows and providing background context for Kafka Connect itself.

Once the Zookeeper, Kafka server and Schema Registry processes have been started, along with the Replicate Con-
nector itself running in Kafka Connect in standalone mode, it will then ingest and process these PLOG files, writing
the change data record messages to Kafka. These can be viewed on the other side with the default Avro consumer
provided with the Kafka Connect framework.

4 Chapter 1. Dbvisit Replicate Connector for Kafka

http://dominicgiles.com/swingbench.html
https://www.dropbox.com/s/4eywm6mqv3q21sb/small-plog-dataset.zip?dl=0
http://replicate-connector-for-kafka.readthedocs.io/en/latest/source_connector.html#load
https://www.dropbox.com/s/wyb8uzaewhylssm/large-plog-dataset-with-load.zip?dl=0
https://www.dropbox.com/s/wyb8uzaewhylssm/large-plog-dataset-with-load.zip?dl=0
https://github.com/dbvisitsoftware/replicate-connector-for-kafka/blob/master/config/dbvisit-replicate.properties
https://www.dropbox.com/s/ao374dfo1iiapel/dbvisit-replicate.properties?dl=0
https://dbvisit.atlassian.net/wiki/pages/viewpage.action?pageId=112853028
https://dbvisit.atlassian.net/wiki/pages/viewpage.action?pageId=112853028
http://docs.confluent.io/3.1.1/connect/quickstart.html

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

1.2.1 Steps

1. Download the Confluent Platform

The only requirement is Oracle Java >= 1.7. Java installation
#Download the software from the Confluent website, version 3.x
#Install onto your test server: i.e: /usr/confluent
unzip confluent-3.1.1-2.11.zip

2. Install the Replicate Connector JAR file

#Create the following directory
mkdir $CONFLUENT_HOME/share/java/kafka-connect-dbvisitreplicate

#Build the Replicate Connector JAR file from the Github Repo (or download as per instructions above)
#Install the JAR file to the location just created above

3. Install the Replicate Connector “Quickstart” properties file

#Create the following directory
mkdir $CONFLUENT_HOME/etc/kafka-connect-dbvisitreplicate

#Install the Quickstart properties file (download link above) to the location just created

4. Work with the example PLOG files

#Create a directory to hold the example PLOG files, e.g:
mkdir /usr/dbvisit/replicate/demo/mine

#Upload and unzip the example PLOG files (download links for small and large datasets provided above) to the location just created
#Edit the plog.location.uri parameter in the Quickstart dbvisit-replicate.properties example configuration file to point to the location where the example PLOG files are located: e.g;
plog.location.uri=file:/usr/dbvisit/replicate/demo/mine

5. Start the Zookeeper, Kafka and Schema Registry processes

#Start Zookeeper
$CONFLUENT_HOME/bin/zookeeper-server-start -daemon $CONFLUENT_HOME/etc/kafka/zookeeper.properties

#Start Kafka
$CONFLUENT_HOME/bin/kafka-server-start -daemon $CONFLUENT_HOME/etc/kafka/server.properties

#Start the Schema Registry
$CONFLUENT_HOME/bin/schema-registry-start -daemon $CONFLUENT_HOME/etc/schema-registry/schema-registry.properties

#Start the REST Proxy (optional)
$CONFLUENT_HOME/bin/kafka-rest-start -daemon $CONFLUENT_HOME/etc/kafka-rest/kafka-rest.properties

NB: this default configuration is run on a single server with local zookeeper, schema registry and REST Proxy services.

As an alternative, for ease of use, these commands can be wrapped in a script and then invoked to start the processes.
Name and save this script to a location of your choice), being sure to set the CONFLUENT_HOME correctly within
it:

#! /bin/bash

echo $(hostname)
CONFLUENT_HOME=/usr/confluent/confluent-3.1.1

echo "INFO Starting Zookeeper"
$CONFLUENT_HOME/bin/zookeeper-server-start -daemon $CONFLUENT_HOME/etc/kafka/zookeeper.properties
sleep 10

echo "INFO Starting Kafka Server"
$CONFLUENT_HOME/bin/kafka-server-start -daemon $CONFLUENT_HOME/etc/kafka/server.properties
sleep 10

1.2. Quickstart 5

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

echo "INFO Starting Schema Registry"
$CONFLUENT_HOME/bin/schema-registry-start -daemon $CONFLUENT_HOME/etc/schema-registry/schema-registry.properties
#sleep 10

echo "INFO Starting REST Proxy"
$CONFLUENT_HOME/bin/kafka-rest-start -daemon $CONFLUENT_HOME/etc/kafka-rest/kafka-rest.properties
sleep 10

And run this as follows:

./kafka-init.sh

6. Run Kafka Connect, and the Replicate Connector

To run the Replicate Connector in Kafka Connect standalone mode open another terminal window to your test server
and execute the following from your CONFLUENT_HOME location:

./bin/connect-standalone ./etc/schema-registry/connect-avro-standalone.properties ./etc/kafka-connect-dbvisitreplicate/dbvisit-replicate.properties

You should see the process start up, log some messages, and then locate and begin processing PLOG files. The change
records will be extracted and written in batches, sending the results through to Kafka.

7. View the messages in Kafka with the default Consumer utilities

Default Kafka consumers (clients for consuming messages from Kafka) are provided by the Confluent Platform for
both Avro and Json encoding, and they can be invoked as follows:

./bin/kafka-avro-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic REP-SOE.CUSTOMERS --from-beginning

{"XID":"0000.68d6.00000002","TYPE":"INSERT","CHANGE_ID":1021010014941,"CUSTOMER_ID":205158,"CUST_FIRST_NAME":"connie","CUST_LAST_NAME":"prince","NLS_LANGUAGE":{"string":"th"},"NLS_TERRITORY":{"string":"THAILAND"},"CREDIT_LIMIT":{"bytes":"\u0006´\u0004"},"CUST_EMAIL":{"string":"connie.prince@oracle.com"},"ACCOUNT_MGR_ID":{"long":158},"CUSTOMER_SINCE":{"long":1477566000000},"CUSTOMER_CLASS":{"string":"Occasional"},"SUGGESTIONS":{"string":"Music"},"DOB":{"long":247143600000},"MAILSHOT":{"string":"Y"},"PARTNER_MAILSHOT":{"string":"N"},"PREFERRED_ADDRESS":{"long":205220},"PREFERRED_CARD":{"long":205220}}

This expected output shows the SOE.CUSTOMERS table column data in the JSON encoding of the Avro records. The
JSON encoding of Avro encodes the strings in the format {"type": value}, and a column of type STRING can
be NULL. So each row is represented as an Avro record and each column is a field in the record. Included also are the
Transaction ID (XID) that the change to this particular record occurred in, the TYPE of DML change made (insert,
delete or update), and the specific CHANGE_ID as recorded for this in Dbvisit Replicate.

NOTE: to use JSON encoding and the JSON consumer please see our notes on JsonConverter settings later in this
guide.

If there are more PLOGS to process you should see changes come through the consumers in real-time, and the follow-
ing “Processing PLOG” messages in the Replicate Connector log file output:

[2016-12-03 09:28:13,557] INFO Processing PLOG: 1695.plog.1480706183 (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:587)
[2016-12-03 09:28:17,517] INFO Reflections took 22059 ms to scan 265 urls, producing 14763 keys and 113652 values (org.reflections.Reflections:229)
[2016-12-03 09:29:04,836] INFO Finished WorkerSourceTask{id=dbvisit-replicate-0} commitOffsets successfully in 9 ms (org.apache.kafka.connect.runtime.WorkerSourceTask:356)
[2016-12-03 09:29:04,838] INFO Finished WorkerSourceTask{id=dbvisit-replicate-1} commitOffsets successfully in 1 ms (org.apache.kafka.connect.runtime.WorkerSourceTask:356)
[2016-12-03 09:29:04,839] INFO Finished WorkerSourceTask{id=dbvisit-replicate-2} commitOffsets successfully in 1 ms (org.apache.kafka.connect.runtime.WorkerSourceTask:356)
[2016-12-03 09:29:04,840] INFO Finished WorkerSourceTask{id=dbvisit-replicate-3} commitOffsets successfully in 1 ms (org.apache.kafka.connect.runtime.WorkerSourceTask:356)

Ctrl-C to stop the consumer processing further, and which will then show a count of how many records (messages) the
consumer has processed:

^CProcessed a total of 156 messages

You can then start another consumer session as follows (or alternatively use a new console window), to see the changes
delivered to the REP-TX.META topic, which contains the meta-data about all the changes made on the source.

./bin/kafka-avro-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic REP-TX.META --from-beginning

{"XID":"0000.68d9.00000000","START_SCN":24893566,"END_SCN":24893566,"START_TIME":1479626569000,"END_TIME":1479626569000,"START_CHANGE_ID":1060010003361,"END_CHANGE_ID":1060010003468,"CHANGE_COUNT":100,"SCHEMA_CHANGE_COUNT_ARRAY":[{"SCHEMA_NAME":"SOE.WAREHOUSES","CHANGE_COUNT":100}]}

6 Chapter 1. Dbvisit Replicate Connector for Kafka

http://replicate-connector-for-kafka.readthedocs.io/en/latest/source_connector.html#json

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

In this output we can see details relating to specific transactions (XID) including the total CHANGE_COUNT
made within this to tables we are interested in, and these are then cataloged for convenience in
SCHEMA_CHANGE_COUNT_ARRAY.

1.3 Features

Dbvisit Replicate Connector supports the streaming of Oracle database change data with a variety of Oracle data
types, varying batch sizes and polling intervals, the dynamic addition/removal of tables from a Dbvisit Replicate
configuration, and other settings.

When beginning with this connector the majority of the default settings will be more than adequate to start with,
although plog.location.uri, which is where PLOG files will be read from, will need to be set according to
your system and the specific location for these files.

All the features of Kafka Connect, including offset management and fault tolerance, work with the Replicate Connec-
tor. You can restart and kill the processes and they will pick up where they left off, copying only new data.

1.3.1 Change Row publishing

Dbvisit Replicate Connector will attempt to assemble a complete view of the row record, based on the information
made available in a PLOG, once the change has been made and committed on the source. This is done by merging the
various components of the change into one complete record that conforms to an Avro schema definition, which itself
is a verbatim copy of the Oracle source table definition.

This type of change record is useful when the latest version of the data is all that’s needed, irrespective of the change
vector. However with state-full stream processing the change vectors are implicit and can be easily extracted.

To illustrate we create a simple table on the Oracle source database, as follows, and perform and insert, update and
delete:

create table SOE.TEST2 (
user_id number (6,0),
user_name varchar2(100),
user_role varchar2(100));

The default Kafka Connect JSON consumer can be invoked as follows (see the notes below on JSON encoding). Note
that using the default Avro encoding with the supplied Avro consumers produces output that does not include the
JSON schema information, and effectively begins from XID as follows:

[oracle@dbvrep01 confluent-3.1.1]$./bin/kafka-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic REP-SOE.TEST2 --from-beginning

Inserts

insert into SOE.TEST2 values (1, ‘Matt Roberts’, ‘Clerk’);

commit;

{"schema":{"type":"struct","fields":[{"type":"string","optional":false,"field":"XID"},{"type":"string","optional":false,"field":"TYPE"},{"type":"int64","optional":false,"field":"CHANGE_ID"},{"type":"int32","optional":true,"field":"USER_ID"},{"type":"string","optional":true,"field":"USER_NAME"},{"type":"string","optional":true,"field":"USER_ROLE"}],"optional":false,"name":"REP-SOE.TEST2"},"payload":{"XID":"0003.014.00009447","TYPE":"INSERT","CHANGE_ID":1416010010667,"USER_ID":1,"USER_NAME":"Matt Roberts","USER_ROLE":"Clerk"}}

Updates

update SOE.TEST2 set user_role = ‘Senior Partner’ where user_id=1;

commit;

1.3. Features 7

http://docs.confluent.io/3.1.1/connect/userguide.html#connect-userguide

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

{"schema":{"type":"struct","fields":[{"type":"string","optional":false,"field":"XID"},{"type":"string","optional":false,"field":"TYPE"},{"type":"int64","optional":false,"field":"CHANGE_ID"},{"type":"int32","optional":true,"field":"USER_ID"},{"type":"string","optional":true,"field":"USER_NAME"},{"type":"string","optional":true,"field":"USER_ROLE"}],"optional":false,"name":"REP-SOE.TEST2"},"payload":{"XID":"0004.012.00007357","TYPE":"UPDATE","CHANGE_ID":1417010001808,"USER_ID":1,"USER_NAME":"Matt Roberts","USER_ROLE":"Senior Partner"}}

Note that a complete row is represented as a message delivered to Kafka. This is obtained by merging the existing and
changed values to produce the current view of the record as it stands.

Deletes

delete from SOE.TEST2 where user_id=1;

commit;

{"schema":{"type":"struct","fields":[{"type":"string","optional":false,"field":"XID"},{"type":"string","optional":false,"field":"TYPE"},{"type":"int64","optional":false,"field":"CHANGE_ID"},{"type":"int32","optional":true,"field":"USER_ID"},{"type":"string","optional":true,"field":"USER_NAME"},{"type":"string","optional":true,"field":"USER_ROLE"}],"optional":false,"name":"REP-SOE.TEST2"},"payload":{"XID":"0007.01b.000072b4","TYPE":"DELETE","CHANGE_ID":1418010000537,"USER_ID":1,"USER_NAME":"Matt Roberts","USER_ROLE":"Senior Partner"}}

Note that the detail for a delete shows the row values as they were at the time this operation was performed.

1.3.2 Topic Per Table

Data from each replicated table is published to its own topic, eg. all change row records for a replicated table will be
published as Kafka messages in a single partition in a topic.

1.3.3 Topic Auto-creation

The automatic creation of topics is governed by the Kafka parameter auto.create.topics.enable, which is
TRUE by default. This means that, as far as the Dbvisit Replicate Connector goes, any new tables detected in the
PLOG files it processes will have new topics automatically generated for them – and change messages written to them
without any additional intervention.

1.3.4 Metadata Topic

Dbvisit Replicate Connector for Kafka automatically creates and writes a meta-data topic which lists out the Trans-
actions (TX), and an ordered list of the changes contained with these. This can be utilized/cross-referenced within
consumers or applications to reconstruct change ordering across different tables, and manifested in different topics.
This is a means of obtaining an authoratitive “global” view of the change order, as they occurred on the Oracle
database, as may be important in specific scenarios and implementations.

So the output of a TX meta data record is as follows:

{"XID":"0002.019.00008295","START_SCN":24914841,"END_SCN":24914850,"START_TIME":1479630708000,"END_TIME":1479630710000,"START_CHANGE_ID":1066010000608,"END_CHANGE_ID":1066010000619,"CHANGE_COUNT":1,"SCHEMA_CHANGE_COUNT_ARRAY":[{"SCHEMA_NAME":"SOE.TEST2","CHANGE_COUNT":1}]}

Explanation:

1. XID: Transaction ID from the Oracle RDBMS

2. START_SCN: SCN of first change in transaction

3. END_SCN: SCN of last change in transaction

4. START_TIME: Time when transaction started

5. END_TIME: Time when transaction ended

6. START_CHANGE_ID: ID of first change record in transaction

7. END_CHANGE_ID: ID of last change record in transaction

8. CHANGE_COUNT: Number of data change records in transaction, not all changes are row level changes

8 Chapter 1. Dbvisit Replicate Connector for Kafka

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

9. SCHEMA_CHANGE_COUNT_ARRAY: Number of data change records for each replicated table in the transaction, as array of:

(a) SCHEMA_NAME: Replicated table name (referred to as schema name because each table has their
own Avro schema definition)

(b) CHANGE_COUNT: Number of data records changed for table

Corresponding to this, each data message in all replicated table topics contain three additional fields in their payload,
for example:

{"XID":"0003.007.00008168","TYPE":"INSERT","CHANGE_ID":1064010025000,"USER_ID":{"bytes":"\u0000"},"USER_NAME":{"string":"Matt Roberts"},"USER_ROLE":{"string":"Clerk"}}

This allows linking it to the transaction meta data topic which holds the following transaction information aggregated
from individual changes:

1. XID: Transaction ID - its parent transaction identifier

2. TYPE: the type of action that resulted in this change row record, eg. INSERT, UPDATE or DELETE

3. CHANGE_ID: its unique change ID in the replication

1.3.5 Data types

Information on the data types supported by Dbvisit Replicate, and so what can be delivered through to PLOG files for
processing by the Replicate Connector for Kafka, can be found here.

Information on Dbvisit Replicate Connector for Kafka specific data type mappings and support can be found in the
Configuration section of this documentation.

1.3.6 LOB Handling

Single part (inline - LOB size < 4000 bytes) LOBS are supported, but only partial updates for larger/out-of-line LOBs.

1.3.7 LOAD

Dbvisit Replicate’s Load function can be used to instantiate or baseline all existing data in the Oracle database tables
by generating special LOAD PLOG files, which can be processed by the Dbvisit Replicate Connector for Kafka.
This function ensures that before any change data messages are delivered the application will write out all the current
table data – effectively initializing or instantiating these data sets within the Kafka topics.

Regular and LOAD PLOGS on the file system.

1682.plog.1480557139
1671.plog.1480555838-000001-LOAD_26839-SOE.ADDRESSES-APPLY
1671.plog.1480555838-000010-LOAD_26845-SOE.PRODUCT_INFORMATION-APPLY
1680.plog.1480556667
1676.plog.1480556539
1677.plog.1480556547
1674.plog.1480555972
1672.plog.1480555970
1671.plog.1480555838-000008-LOAD_26842-SOE.ORDER_ITEMS-APPLY
1671.plog.1480555838-000006-LOAD_26848-SOE.ORDERENTRY_METADATA-APPLY
1671.plog.1480555838-000004-LOAD_26844-SOE.INVENTORIES-APPLY
1671.plog.1480555838-000009-LOAD_26847-SOE.PRODUCT_DESCRIPTIONS-APPLY
1671.plog.1480555838-000007-LOAD_26843-SOE.ORDERS-APPLY
1671.plog.1480555838-000013-LOAD_26841-SOE.WAREHOUSES-APPLY

1.3. Features 9

https://dbvisit.atlassian.net/wiki/display/ugd8/Supported+Datatypes

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

1671.plog.1480555838
1678.plog.1480556557
1671.plog.1480555838-000002-LOAD_26840-SOE.CARD_DETAILS-APPLY
1671.plog.1480555838-000012-LOAD_42165-SOE.TEST2-APPLY
1673.plog.1480555971
1681.plog.1480556671
1679.plog.1480556659
1671.plog.1480555838-000011-LOAD_39367-SOE.TEST1-APPLY
1671.plog.1480555838-000003-LOAD_26838-SOE.CUSTOMERS-APPLY

The parameter plog.global.scn.cold.start can be invoked to specify a particular SCN that the connector
should work from, before the LOAD operation was run to generate the LOAD plogs, to provide some known guarantees
around the state of the tables on the Oracle source at this time.

Note: the system change number or SCN, is a stamp that defines a committed version of a database at a point in time.
Oracle assigns every committed transaction a unique SCN.

1.3.8 Replicate Stream Limitation

Each replicated table publishes their data to their own topic in Kafka, identified by the fully qualified name (including
user schema owner) of the replicated table. If more than one Dbvisit Replicate Connector process is mining the same
REDO LOGs the PLOG sequences may overlap and the Kafka topics must be separated by adding a unique namespace
identifier to the topic names in Kafka.

See the topic.prefix parameter, which has the default of “REP-“.

1.3.9 DDL Support

At this point in time only there is only limited support for DDL.

New tables may be added to a replication, if enabled on the Dbvisit Replicate side, then these will automatically be
detected by the Replicate Connector for Kafka, and written to a new topic. However, table/column renames, truncate
and drop table statements are ignored, and will not impact on the existing associated Kafka topic.

The adding and removing of table columns is supported by default. Those records which existed prior to the addition
of a new column will have default (empty) value assigned during their next operation, as in named EXTRA column in
the following:

{"XID":"0004.012.00006500","TYPE":"UPDATE","CHANGE_ID":1076010000726,"USER_ID":{"bytes":"\u0000"},"USER_NAME":{"string":"Matt Roberts"},"USER_ROLE":{"string":"Administrator"},"EXTRA":{"string":""}}

Conversely any columns which are dropped will have null values assigned, as in the following, for any previously
values which existed in the record set:

{"XID":"0005.013.0000826f","TYPE":"UPDATE","CHANGE_ID":1078010000324,"USER_ID":{"bytes":"\u0000"},"USER_NAME":{"string":"Matt Roberts"},"USER_ROLE":{"string":"Senior Partner"},"EXTRA":null}

1.3.10 JSON

To use JSON encoding, rather than the default Avro option, use the JSON Converter options supplied as part of the
Kafka Connect framework, by setting them as follows in the $CONFLUENT_HOME/etc/schema-registry/connect-
avro-standalone.properties or the $CONFLUENT_HOME /etc/schema-registry/connect-avro-distributed.properties
parameter files:

key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter

10 Chapter 1. Dbvisit Replicate Connector for Kafka

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

The non-Avro consumer can be invoked as follows, and will then display output as follows (here for the SOE.TEST1
table):

./bin/kafka-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic REP-SOE.TEST1 --from-beginning

{"schema":{"type":"struct","fields":[{"type":"string","optional":false,"field":"XID"},{"type":"string","optional":false,"field":"TYPE"},{"type":"int64","optional":false,"field":"CHANGE_ID"},{"type":"string","optional":false,"field":"USERNAME"},{"type":"bytes","optional":false,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"130"},"field":"USER_ID"},{"type":"string","optional":true,"field":"PASSWORD"},{"type":"string","optional":false,"field":"ACCOUNT_STATUS"},{"type":"int64","optional":true,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"LOCK_DATE"},{"type":"int64","optional":true,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"EXPIRY_DATE"},{"type":"string","optional":false,"field":"DEFAULT_TABLESPACE"},{"type":"string","optional":false,"field":"TEMPORARY_TABLESPACE"},{"type":"int64","optional":false,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"CREATED"},{"type":"string","optional":false,"field":"PROFILE"},{"type":"string","optional":true,"field":"INITIAL_RSRC_CONSUMER_GROUP"},{"type":"string","optional":true,"field":"EXTERNAL_NAME"},{"type":"string","optional":true,"field":"PASSWORD_VERSIONS"},{"type":"string","optional":true,"field":"EDITIONS_ENABLED"},{"type":"string","optional":true,"field":"AUTHENTICATION_TYPE"}],"optional":false,"name":"REP-SOE.TEST1"},"payload":{"XID":"0000.99c7.00000009","TYPE":"INSERT","CHANGE_ID":1089010003413,"USERNAME":"OE","USER_ID":"K0eTCAjEbEWPIpQQtAXbWx2lg3tDC5jPtnJazeyICKB1bCluSpLAAAAAAAAAAAAAAAAAAAAAAA==","PASSWORD":"","ACCOUNT_STATUS":"OPEN","LOCK_DATE":null,"EXPIRY_DATE":null,"DEFAULT_TABLESPACE":"DATA","TEMPORARY_TABLESPACE":"TEMP","CREATED":1383722235000,"PROFILE":"DEFAULT","INITIAL_RSRC_CONSUMER_GROUP":"DEFAULT_CONSUMER_GROUP","EXTERNAL_NAME":"","PASSWORD_VERSIONS":"10G 11G ","EDITIONS_ENABLED":"N","AUTHENTICATION_TYPE":"PASSWORD"}}

1.3.11 Delivery Semantics

The Replicate Connector for Kafka manages offsets committed by encoding then storing and retrieving them (see the
log file extract below). This is done in order that the connector can start from the last committed offsets in case of
failures and task restarts. The replicate offset object is serialized as JSON and stored as a String schema in Kafka
offset storage. This method should ensure that, under normal circumstances, records delivered from Oracle are only
written once to Kafka.

[2016-11-17 11:41:31,757] INFO Offset JSON - TX.META:{"plogUID":4030157521414,"plogOffset":2870088} (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:353) [2016-11-17 11:41:31,761] INFO Kafka offset retrieved for schema: TX.META PLOG: 938.plog.1478197766 offset: 2870088 (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:392) [2016-11-17 11:41:31,761] INFO Processing starting at PLOG: 938.plog.1478197766 at file offset: 2870088 schemas: [TX.META] (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:409) [2016-11-17 11:41:31,762] INFO Offset JSON - SCOTT.TEST2:{"plogUID":4030157521414,"plogOffset":2869872} (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:353) [2016-11-17 11:41:31,762] INFO Kafka offset retrieved for schema: SCOTT.TEST2 PLOG: 938.plog.1478197766 offset: 2869872 (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:392) [2016-11-17 11:41:31,762] INFO Processing starting at PLOG: 938.plog.1478197766 at file offset: 2853648 schemas: [SCOTT.TEST1, SCOTT.TEST2] (com.dbvisit.replicate.kafkaconnect.ReplicateSourceTask:409)

1.4 Schema Evolution

The Replicate Connector supports schema evolution when the Avro converter is used. When there is a change in a
database table schema, the Replicate Connector can detect the change, create a new Kafka Connect schema and try
to register a new Avro schema in the Schema Registry. Whether it is able to successfully register the schema or not
depends on the compatibility level of the Schema Registry, which is backward by default.

For example, if you add or remove a column from a table, these changes are backward compatible by default (as
mentioned above) and the corresponding Avro schema can be successfully registered in the Schema Registry.

You can change the compatibility level of Schema Registry to allow incompatible schemas or other compatibility
levels by setting avro.compatibility.level in Schema Registry. Note that this is a global setting that applies
to all schemas in the Schema Registry.

1.5 Deployment Guidelines

1.5.1 Upgrading

To upgrade to a newer version of the Dbvisit Replicate Connector for Kafka simply stop this process running in Kafka
Connect, and replace the associated JAR file in the following location:

$CONFLUENT_HOME/share/java/kafka-connect-dbvisitreplicate

1.6 Troubleshooting

1.6.1 Logging

To alter logging levels for the connector all you need to do is update the log4j.properties file used by the invocation of
the Kafka Connect worker. You can either edit the default file directly (see bin/connect-distributed and bin/connect-
standalone) or set the env variable KAFKA_LOG4J_OPTS before invoking those scripts (exact syntax is ‘ export
KAFKA_LOG4J_OPTS=”-Dlog4j.configuration=file:${CFG_DIR}/dbvisitreplicate-log4j.properties” ‘)

1.4. Schema Evolution 11

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

In the following example, the settings were set to DEBUG to increase the log level for this connector class (and other
options are ERROR, WARNING and INFO):

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=[%d] %p %m (%c:%L)%n
log4j.logger.org.apache.zookeeper=WARN
log4j.logger.org.I0Itec.zkclient=WARN
log4j.logger.dbvisit.replicate.kafkaconnect.ReplicateSourceTask=DEBUG
log4j.logger.dbvisit.replicate.kafkaconnect.ReplicateSourceConnector=DEBUG

12 Chapter 1. Dbvisit Replicate Connector for Kafka

CHAPTER 2

Configuration Options

2.1 Configuration Parameters

2.1.1 Key User Configuration Properties

Note: plog.location.uri - is the location from which Dbvisit Replicate Connector will search for and read PLOG files
delivered by the Dbvisit Replicate application. This directory must be local to the filesystem on which Kafka Connect
is running, or accessible to it via a mounted filesystem. It cannot be an otherwise remote filesystem.

Note: plog.data.flush.size - for low transactional volumes (and for testing) it is best to change the default value of
plog.data.flush.size in the configuration file to a value less than your total number of change records, eg. for
manual testing you can use 1 to verify that each and every record is emitted correctly. This configuration parameter
is used as the internal PLOG reader’s cache size which translates at run time to the size of the polled batch of Kafka
messages. It is more efficient under high transactional load to publish to Kafka (particularly in distributed mode where
network latency might be an issue) in batches. Please note that in this approach the data from the PLOG reader is
only emitted once the cache is full (for the specific Kafka source task) and/or the PLOG is done, so an Oracle redo
log switch has occurred. This means that if the plog.data.flush.size is greater than total number of LCRs in
cache it will wait for more data to arrive or a log switch to occur.

2.1.2 All User Configuration Properties

tasks.max Maximum number of tasks to start for processing PLOGs.

• Type: string

• Default: 4

topic.prefix Prefix for all topic names.

• Type: string

• Default: REP-

plog.location.uri Replicate PLOG location URI, output of Replicate MINE.

• Type: string

• Default: file:/home/oracle/ktest/mine

13

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

plog.data.flush.size LCRs to cache before flushing, for connector this is the batch size, choose this value
according to transactional volume, for high throughput to kafka the default value may suffic, for low or sporadic
volume lower this value, eg. for testing use 1 which will not use cache and emit every record immediately.

• Type: string

• Default: 1000

plog.interval.time.ms Time in milliseconds for one wait interval, used by scans and health check.

• Type: string

• Default: 500

plog.scan.interval.count Number of intervals between scans, eg. 5 x 0.5s = 2.5s scan wait time.

• Type: string

• Default: 5

plog.health.check.interval Number of intervals between health checks, these are used when initially wait-
ing for MINE to produce PLOGs, eg. 10 * 0.5s = 5.0s.

• Type: string

• Default: 10

plog.scan.offline.interval Default number of health check scans to decide whether or not replicate is
offline, this is used as time out value. NOTE for testing use 1, i.e. quit after first health check 1 * 10 * 0.5s = 5s
where 10 is plog.health.check.interval value and 0.5s is plog.interval.time.ms value.

• Type: string

• Default: 1000

topic.name.transaction.info Topic name for transaction meta data stream.

• Type: string

• Default: TX.META

plog.global.scn.cold.start Global SCN when to start loading data during cold start.

• Type: string

• Default: 0

14 Chapter 2. Configuration Options

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

2.2 Data Types

Oracle Data Type Connect
Data Type

Default Value Conversion Rule

NUMBER Int32 -1 scale <= 0 and precision - scale < 10
NUMBER Int64 -1L scale <= 0 and precision - scale > 10 and < 20
NUMBER Decimal BigDeci-

mal.ZERO
scale > 0 or precision - scale > 20

CHAR Type.String Empty string
(zero length)

Encoded as UTF8 string

VARCHAR “” “” “”
VARCHAR2 “” “” “”
LONG “” “” “”
NCHAR Type.String Empty string

(zero length)
Encoded as UTF8, attempt is made to auto-detect
if national character set was UTF-16

NVARCHAR “” “” “”
NVARCHAR2 “” “” “”
INTERVAL DAY TO
SECOND

Type.String Empty string
(zero length)

INTERVAL YEAR TO
MONTH

“” “”

CLOB Type.String Empty string
(zero length)

UTF8 string

NCLOB “” “” “”
DATE Timestamp Epoch time
TIMESTAMP “” “”
TIMESTAMP WITH
TIME ZONE

“” “”

TIMESTAMP WITH
LOCAL TIME ZONE

“” “”

BLOB Bytes Empty byte array
(zero length)

Converted from SerialBlob to bytes

RAW Bytes Empty byte array
(zero length)

No conversion

LONG RAW “” “” “”

2.3 Distributed Mode Settings

Use the following to start Dbvisit Replicate Connector for Kafka in Distributed mode, once the Kafka Connect worker
has been started on the host node. Postman is an excellent utility for working with cUrl commands.

curl -v -H "Content-Type: application/json" -X PUT 'http://localhost:8083/connectors/kafka-connect-dbvisitreplicate/config' -d
'{

"connector.class": "com.dbvisit.replicate.kafkaconnect.ReplicateSourceConnector",
"tasks.max": "2",
"topic.prefix": "REP-",
"plog.location.uri": "file:/foo/bar",
"plog.data.flush.size": "1",
"plog.interval.time.ms": "500",
"plog.scan.interval.count": "5",
"plog.health.check.interval": "10",
"plog.scan.offline.interval": "1000",

2.2. Data Types 15

https://www.getpostman.com/

Dbvisit Replicate Connector for Kafka documentation, Release 1.0.0-SNAPSHOT

"topic.name.transaction.info": "TX.META"
}'

Or save this to a file <json_file>:

{
"name": "TSource",
"config": {
"connector.class": "com.dbvisit.replicate.kafkaconnect.ReplicateSourceConnector",

"tasks.max": "2",
"topic.prefix": "REP-",
"plog.location.uri": "file:/foo/bar",
"plog.data.flush.size": "1",
"plog.interval.time.ms": "500",
"plog.scan.interval.count": "5",
"plog.health.check.interval": "10",
"plog.scan.offline.interval": "1000",
"topic.name.transaction.info": "TX.META"
}

}

curl -X POST -H "Content-Type: application/json" http://localhost:8083 --data "@<json_file>"

16 Chapter 2. Configuration Options

CHAPTER 3

Changelog

3.1 Replicate Source Connector

• DATE () - Early Release

17

https://github.com/dbvisitsoftware/replicate-connector-for-kafka/

	Dbvisit Replicate Connector for Kafka
	Overview
	The Oracle Source
	The Kafka Target

	Quickstart
	Steps

	Features
	Change Row publishing
	Topic Per Table
	Topic Auto-creation
	Metadata Topic
	Data types
	LOB Handling
	LOAD
	Replicate Stream Limitation
	DDL Support
	JSON
	Delivery Semantics

	Schema Evolution
	Deployment Guidelines
	Upgrading

	Troubleshooting
	Logging

	Configuration Options
	Configuration Parameters
	Key User Configuration Properties
	All User Configuration Properties

	Data Types
	Distributed Mode Settings

	Changelog
	Replicate Source Connector

